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Abstract 

The aim of the study was to analyze the impact of environment, intensity and distance rowed 

on temporal variability of strokes and on knee angle variability. 11 participants rowed  

2,000 m at high and low intensities on an ergometer and at high intensity in a single  

on-water. Data were collected at the beginning and at the end of each exercise. All the factors 

influenced significantly the temporal variability (respectively beta=-0.013 and p .007=;  

beta= 0.007 and p=.021; beta=0.06 and p=.028). The difference of visual information and the 

need of the rower to adapt to environmental factors might explain the greater temporal 

variability exhibited by the rowers while rowing on water. Participants exhibited a lower 

variability when rowing at high intensity which could be explained by increased difficulty of 

the task. Intensity and distance travelled did not influence significantly the variability of the 

knee angle on the ergometer. 
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Chapter 1 

1 Introduction 

The World Rowing Federation, known as FISA (Fédération Internationale des Sociétés 

d’Aviron) was founded in 1892 and now includes 153 national rowing federations. Four 

years after FISA was established, rowing became an Olympic sport  

(World Rowing, n.d.-a). Nowadays, Olympic Games and World Championship, 

competitions are held on a 2,000 m course. Athletes need approximately five to nine 

minutes to cover the 2,000 m according to 2016 Olympic and World Championship 

results (World Rowing, n.d.-b) depending on their ability, the number of people in the 

boat, their gender and other external factors such as wind.  

In rowing, athletes repeat the same movements over and over in order to be the first boat 

to cross the finish line. A full stroke cycle is divided into two phases which are called the 

“drive” and the “recovery”. The drive (propulsion phase) occurs between the catch (when 

the hands are closest to the stern of the boat) and the finish (when the hands are closest to 

the bow of the boat) positions. The recovery phase occurs between the finish and the 

catch positions (Thornton et al., 2017). These two phases are done in sequence in order to 

execute the stroke pattern. At the catch, rowers have their arms extended, their knees and 

their hips in flexion. While at the finish, athletes have their elbows in flexion, their knees 

extended and their hips greatly extended. 

Rowers normally compete on water, but they can also compete indoors on an ergometer. 

Ergometers are often used as a substitute for on-water training when weather conditions 

are not adequate to row outdoors due to fog, low temperatures or high winds. 

Rowers can row in singles, doubles, fours or eights. The number is associated with the 

number of rowers in the boat. Sometimes, there is also a coxswain in the boat. The role of 

the coxswain includes steering the boat, helping the rowers with the rhythm as well as 

their technique (Rowing Canada) . 
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Crew with similar force patterns are more efficient (Hill, 2002). When rowing in pairs, 

some rowers are able to adapt their force-time profile in order to increase their 

synchronicity with the other crew member (Baudouin & Hawkins, 2004). Seifert et al. 

(2017) determined that variability in the interpersonal coordination between rowers can 

be functional and allows the rowers to achieve a task-goal (related to the speed or the 

direction of the boat). 

According to Srinivasan and Mathiassen (2012), motor variability addresses the 

differences between each movement and can be studied at different levels of movement 

execution across time within an individual. It can be measured using different types of 

variables, such as performance measures, kinetic variables, kinematic variables, muscle 

activity and coordination. Initially, variability in motor function was considered 

dysfunctional and harmful to performance. Intra-individual variability was considered to 

be noise in the motor system (Srinivasan & Mathiassen, 2012). However, recent research 

shows that variability occurs at different expertise levels and can sometimes be 

considered functional. The role that variability plays in the coordination and control of 

the sensorimotor system is a central issue for motor control studies (Newell & Corcos, 

1993). 

A few studies report that motor variability and performance can be described in a  

“U-shaped” relationship. Novices who are learning to do a skill have lots of variability in 

their patterns while sub-elites have only little. Experts have more variability than  

sub-elites which allows them to spread the load of training or competition across different 

body structures by developing more variable motor strategies. Variability exhibits by 

experts is functional in opposition to variability exhibits by novices (Bartlett, Wheat, & 

Robins, 2007; Srinivasan & Mathiassen, 2012). Also, experts can used movement 

variability in order to adapt to different situations (Bartlett et al., 2007). 

1.1 Purpose and Hypotheses 

1.1.1 Purpose 

While some studies present benefits about motor variability (Bartlett et al., 2007), these 

benefits are not as clear in rowing literature. While rowing literature considers 
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consistency important for performance, it would be interesting to see if the benefits of 

variability outlined in motor variability literature apply to rowing. It would also be 

interesting to see how different factors affecting motor variability presented in the 

literature influence motor variability while rowing. Using motor variability in order to 

study rowing might allow researchers to better understand the rowing motion. 

The purpose of this study is to evaluate the impact of different factors on motor 

variability. Spatial (variability in joint angle) as well as temporal variability (stroke 

duration variability) will be used to analyze motor variability in rowing. 

 The different factors that will be studied are: 

 Environment (on-water rowing and ergometer rowing) 

 Intensity (low intensity and high intensity) 

 Distance rowed (beginning of the exercise and end of the exercise) 

1.1.2 Hypotheses 

 Environment will influence temporal variability of strokes 

 Intensity will influence temporal variability as well as knee joint angle variability 

of the rower’s movements. 

 Distance rowed will influence temporal variability as well as knee joint angle 

variability of the rower’s movements. 
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Chapter 2 

2 Literature review 

This chapter will present an overview of the literature linked to motor variability and 

rowing. 

2.1 Variability of Different Systems in the Body 

According to Newell and Corcos (1993), variability is inherent within and between all 

biological systems. Heart rate variability (HRV), variability in the electrical signals of the 

brain and motor variability are examples of variability that have been studied in different 

systems of the human body. Variation in biological processes might be explained by 

health or diseases (James, 2004). 

HRV has not only been studied in sick and injured people but also in athletes. HRV 

represents adaptive responses of the autonomic nervous system to challenges to the 

circulation that can been seen for example with respiration (Malik, 1998). Low HRV is 

associated with a higher risk of myocardial infarction and neuropathic diabetes (Malik, 

1998). In middle aged men (40 to 60 years old) participants who were classified in the 

low heart rate variability group had higher systolic blood pressure, higher heart rate, and 

were more likely to die from various causes (Dekker et al., 1997). In addition, it seems 

that there is evidence of reduced HRV during low intensity and steady state exercise up 

to 10 days following a concussion (Blake, McKay, Meeuwisse, & Emery, 2016). 

For athletes, HRV is studied in relation to fatigue. Kajaia, Maskhulia, Chelidze, 

Akhalkatsi, and Kakhabrishvili (2017) concluded that the cardiac autonomic imbalance 

observed in over-trained athletes implies changes in the variability of the heart rate 

signal, and therefore HRV could provide valuable information in the detection of 

overtraining in athletes. Similarly, results from a case study by Plews, Laursen, Kilding, 

and Buchheit (2012) suggests that HRV may be a useful measurement indicative of the 

progression towards non-functional overreaching. Non-functional overreaching can be 

described as a stress-regeneration imbalance with negative outcomes. HRV has also been 
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studied as a way to monitor the training load in rowing (Plews, Laursen, Kilding, & 

Buchheit, 2014). To summarize, HRV had been widely used in order to get information 

about the health of different populations.  

The electroencephalogram (EEG) records the electrical activity of the brain and the 

electric signals have been analyzed using a method of nonlinear dynamics in order to 

measure chaos in those signals. Stam et al. (1994) demonstrated a decrease in chaotic 

dynamics in the EEG signals of demented and Parkinson Disease patients. In addition, 

the link between EEG signals and epilepsy have been studied, in that, during an epileptic 

seizure of short duration, the brain activity signal tends to have a more stable periodic 

motion. Furthermore, Gallez and Babloyantz (1991) studied brain activity in three 

different stages: alpha waves (eyes closed), deep sleep (stage four) and the Creutzfeld-

Jakob coma. They found that the degree of chaos in the EEG signal increases from a 

coma to a deep sleep and from a deep sleep to an awake stage. A higher chaotic level in 

the EEG signals may lead to a wider variety of responses and behaviours (Gallez & 

Babloyantz, 1991). In contrast, information processing would be impossible given stable 

periodic motion in the EEG signals (Babloyantz & Destexhe, 1986). It could be explain 

by the chaotic dynamics increasing the resonance capacity of the brain. According to the 

previous studies, having more chaotic brain electrical activity may be an indicator of 

good health. 

The relation between motor variability and various health problems has also been studied. 

Perturbations to the normal state of a human’s system (e.g., pain and fatigue) might cause 

adaptations in movement variability (Lomond & Côté, 2010) and may have important 

clinical implications too (Madeleine, Mathiassen, & Arendt-Nielsen, 2008). Variability in 

the motor system can either increase or decrease with distress. For example, elderly 

fallers showed two-fold greater variability than elderly non-fallers for the first step length 

during their gait initiation patterns. Mbourou, Lajoie, and Teasdale (2003) concluded that 

this variability might be a predictor of postural problems. On the other side, Hamill, van 

Emmerik, Heiderscheit, and Li (1999) observed decreased variability of the continuous 

relative phase which is a measure of coordination patterns in symptomatic individuals 

with patellofemoral pain compared with non-injured individuals. 
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Motor variability can either be beneficial or detrimental to performance depending on the 

parameter of interest (Heiderscheit, Hamill, & van Emmerik, 2002). A lack of variability 

is associated with a system that has too much rigidity and is unable to adapt to stresses 

(Georgoulis, Moraiti, Ristanis, & Stergiou, 2006) and any excess of variability is 

associated with a system that is noisy and unstable (Stergiou, Harbourne, & Cavanaugh, 

2006). In other words, any lack or excess of variability can be associated with abnormal 

motor development or unhealthy states (Stergiou et al., 2006). 

Variability in the human body can be used to distinguish healthy and diseased systems. 

The study of variability in biological rhythms has provided researchers with extremely 

useful insights for their understanding of pathology (Georgoulis et al., 2006). It is 

important to note that the optimal amount of variability depends on the biological system 

involved and the variable under examination (James, 2004). 

2.2 Influence of Fatigue on Motor Variability 

Fatigue does not have a widely accepted definition according to Friedman and Friedman 

(1993). Enoka and Stuart (1985), for example, defined it as a “progressive increase in the 

effort required to exert a desired force and the eventual progressive inability to maintain 

this force in sustained or repeated contractions” (p.2281). Moreover, Cortes, Onate, and 

Morrison (2014) suggest that the impact of exercise-induced fatigue is not only restricted 

to a decline in the force producing capacity of the system, but is also related to the 

variability of the movement pattern. Likewise, the relationship between fatigue and motor 

variability has been studied by some other researchers (Cignetti, Schena, & Rouard, 

2009; Cortes et al., 2014; Fuller, Fung, & Côté, 2011; Selen, Beek, & van Dieën, 2007).  

Qin, Lin, Faber, Buchholz, and Xu (2014) studied kinematic variability in simulated light 

assembly work. Participants had to use their dominant hand in order to reach for and pick 

up washers and stacked them during four sessions of 20 minutes each. The researchers 

observed decreased variability in the wrist and the elbow flexion over time, but an 

increase in the variability of the shoulder abduction and the wrist radial deviation. These 

adaptations may have occurred to reduce the load on the fatigued shoulder, and to 

compensate for the development of fatigue. Qin et al. (2014) suspected that these changes 
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in variability over time occurred in order to fulfill specific task requirements. Moreover, 

Hellard et al. (2008) studied motor variability with regards to fatigue in swimming. They 

found decreased stroke rate variability during the second 100 m of a 200 m race for 

backstroke, butterfly and freestyle races in comparison to the first 100 m of each race 

which might be explained by a fatigue effect. 

Srinivasan and Mathiassen (2012) suggested that more motor variability might lead to a 

slower development of fatigue and relieve the load on fatiguing tissues. Gates and 

Dingwell (2011) have shown that motor variability increases with fatigue in a task similar 

to sawing. In this study, the authors suggest that the increase in variability is possibly due 

to adaptations that the subjects made to combat fatigue or might directly be associated 

with neuromuscular fatigue. Other studies have reached the same conclusion for different 

tasks such as cross-country skiing (Cignetti et al., 2009), tracking a target with elbow 

flexion and extension (Selen et al., 2007), and a repetitive reaching task (Fuller et al., 

2011). Selen et al. (2007) concluded that, even if fatigue did not affect the success of the 

reaching task or the flexion and extension of the elbow task, fatigue had an impact on 

motor variability during the movement. 

Aune, Ingvaldsen, and Ettema (2008) compared the change of motor variability in expert 

and recreational table tennis players during a prefatigued and fatigued condition. Table 

tennis players showed a reduction in power-generation capacity between 28% and 39% 

when in a fatigued condition compared to a prefatigued condition. Highly skilled players 

had a high variability of the movement patterns for all segments (shoulder, elbow, wrist, 

and racket) during the prefatigued condition, while the variability was smaller in the 

fatigued condition. Recreational table tennis players had a lower variability of the 

movement patterns for all segments during the prefatigued condition. For the fatigued 

condition, the variability remained relatively stable or increased depending on the 

segment studied.  

Studies have shown that motor variability can be affected negatively or positively by 

fatigue. According to Srinivasan and Mathiassen (2012), the difference in effect of 
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fatigue on motor variability might be task specific or due to individual capacity such as 

skill level (Aune et al., 2008). 

2.3 Influence of Fatigue in Rowing 

Rowing is classified as an endurance sport. In fact, rowers are repeating the same 

movement patterns. Studies have shown that some physiological, as well as some 

biomechanical, changes take place as a result of this prolonged type of movement. 

Holt, Bull, Cashman, and McGregor (2003) studied kinematical changes in the spine 

during a rowing exercise that lasted for one hour. They observed an increase of the 

maximal flexion of the spine which might be attributed to muscle fatigue in this area. 

Holt et al. (2003) suggested that this change may even have an impact on low back pain. 

Mackenzie, Bull, and McGregor (2008) were also interested in the same topic, but found 

no kinematical changes (spine, thigh flexion/extension, relative timing during the stroke 

where maximal thigh flexion/extension occurs, femoral extension at the finish, maximal 

femoral extension as well as the relative timing during the stroke where maximal femoral 

extension occurs). They explained the difference between the results of their study and 

those of Holt et al. (2003) by the divergence between the athletes’ familiarity and 

experience with the test performed. Athletes were more familiar with the test performed 

in Mackenzie et al. (2008). 

Wilson, Simms, Gormley, and Gissane (2011) were interested in comparing the lumbar 

spine kinematic during a fatiguing protocol of ergometer and on-water rowing. They 

found a significant increase in the range of motion of the lumbar spine on the ergometer 

compared to on-water rowing.  

Pollock, Jones, Jenkyn, Ivanova, and Garland (2012) used electromyography and 

kinematics to quantify fatigue in a 2,000 m simulation race on a Concept2
®

 rowing 

ergometer. They found a change in the sequencing of the legs, trunk and arms, since the 

peak angular velocity of trunk extension and upper extremity flexion occurred later in the 

drive at 1,500 m compared to at 250 m. This could be due to the trunk becoming more 

flexible which might lead the trunk to be less able to transfer forces from arms and legs. 
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Husmann et al. (2017) found a significant decrease of isometric and concentric maximal 

voluntary contraction of the knee extensors for both females and males following a  

2,000 m rowing exercise. The researchers attributed the knee extensor strength loss to 

central fatigue since there were no significant changes for the quadriceps twitch torque in 

response to paired electric stimuli which are associated with peripheral fatigue. 

Frias et al. (2018) studied the impact of rowing a very long distance (160 km) on 

different biomarkers. The concentration of biomarkers related to inflammation (including 

Il-6 and TNF alpha) and cardiac activity (creatine kinase and pro brain natriuretic peptide 

(NT-proBNP)) increased between pre and post exercise. Post-exercise, their lipid profile 

was better since there was a decrease of triglycerides and total cholesterol and an 

increased in high-density lipoprotein cholesterol (HDL-c).  

To conclude, most studies have found kinematical changes as well as hormonal changes 

with rowing exercises. These changes are a sign of fatigue in rowing and may result in 

decreased performance, as well as an increased risk of injuries. 

2.4 Influence of Injuries on Motor Variability 

Studies have shown that pain and injuries may affect motor variability (Côté, Raymond, 

Mathieu, Feldman, & Levin, 2005; Georgoulis et al., 2006; Lamoth, Meijer, 

Daffertshofer, Wuisman, & Beek, 2006; Madeleine et al., 2008; van den Hoorn, Bruijn, 

Meijer, Hodges, & van Dieën, 2012).  The nature of the pain itself (Madeleine et al., 

2008) and the patient’s perception of it (Moseley & Hodges, 2006) might be factors that 

influence movement variability.  

The variability of task timing increased during experimentally induced pain compared to 

before the pain induction and the authors hypothesized that increased variability during 

acute pain might be the central nervous system’s way of finding the least painful solution 

for each task (Madeleine et al., 2008). Moseley and Hodges (2006) introduced a painful 

stimulus to their study’s participants. Participants were classified into two groups. 

Participants for whom the timing of abdominal muscle activation in the last 10 no-pain 

trials was no different than in the last 10 pain trials were classified has nonresolvers. The 
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remaining participants were classified as resolvers. Resolvers had a greater variability for 

the last 10 pain trials as well as the remaining no pain trial compared to nonresolvers. It 

seems that the resolvers were able to adapt to the pain stimulus compared to the 

nonresolvers. Interestingly, nonresolvers were characterized as those believing they 

suffered from back trouble. Moseley and Hodges (2006) suggested that the loss of 

variability might be associated with these participants' perception of lingering back pain. 

For butchers with chronic neck-shoulder pain who performed a simulated meat cutting 

task, kinematic variability (arm and trunk accelerations) decreased compared to healthy 

individuals (Madeleine et al., 2008). Another study from Madeleine and Madsen (2009) 

reported a decrease of motor variability at the head-shoulder vertical displacement joint 

for individuals with discomfort in the neck shoulder region. The discomfort also affected 

the variability in remote locations such as elbow or hip joints. van den Hoorn et al. (2012) 

found that participants with chronic low back pain adopted a more protective movement, 

and so increased trunk stiffness. In the same vein, Moseley and Hodges (2006) 

demonstrated that participants with reduced variability after induced back pain failed to 

return to a normal postural strategy when the pain stopped. Madeleine et al. (2008) 

explained this decrease due to the motor system becoming less flexible due to chronic 

pain. The non resolution of the normal variability following a chronic pain episode might 

increase the risk of further back pain (Moseley & Hodges, 2006). 

Similarly, Georgoulis et al. (2006) found that variability of the flexion-extension of the 

knee decreased on the injured knee compared to the contralateral knee for participants 

with ACL injury. This decrease might lead to a greater likelihood for future injuries at the 

knee because patients are unable to adapt to changing environmental demands 

(Georgoulis et al., 2006). Hamill et al. (1999) suggested that the variability has a 

functional role in the coordination of the lower limbs. The researchers saw a decrease in 

the variability of the thigh rotation and leg rotation coupling for the injured limb of the 

patellofemoral pain group compared to the healthy one. They could not determine if pain 

was a cause or a consequence of motor variability. Moreover, Gallagher, Nelson-Wong, 

and Callaghan (2011) studied the variability of the position of the centre of pressure 

during prolonged standing with patients with chronic low back pain. They concluded that 
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decreased variability is an adaptive response to the pain as opposed to a consequence of 

it. 

According to Bartlett et al. (2007), Hamill et al. (1999) and Srinivasan and Mathiassen 

(2012), increased motor variability would divide stresses among different tissues and 

would decrease the load on a specific tissue. Even after recovery, reduction of motor 

variability can persist (Moseley & Hodges, 2006; Sterling, Jull, & Wright, 2001) and 

might increase the chance of getting successive injuries (Georgoulis et al., 2006; Moseley 

& Hodges, 2006).  

To summarize, pain could be a cause and/or a consequence of motor variability. Chronic 

pain reduces motor variability at the injured site to minimize pain while acute pain may 

increase motor variability in order to find the least painful pattern (Srinivasan & 

Mathiassen, 2012). The diminution of motor variability might stay after recovery even if 

the pain is gone and increases the risk of further injuries by preventing adaptation. 

2.5 Rowing Injuries 

The vast majority of injuries in rowing are overuse injuries (Hosea & Hannafin, 2012; 

Rachnavy, 2012; Smoljanovic et al., 2015), and caused by the repetitive nature of the 

sport. Essentially, different body parts are particularly stressed because of the intensity 

and the vast number of repetitions of the rowing motion (Hosea & Hannafin, 2012). 

According to Smoljanovic et al. (2015), the mean injury rate per year is 0.92 injuries per 

rower which represents 1.75 injuries per 1,000 training sessions per rower. Injury 

incidence is proportionally related to the volume of training and technique (Hosea & 

Hannafin, 2012). It can also be linked with poor technique, fatigue, overload, rapid 

changes in training frequency, intensity or volume (Rachnavy, 2012; Rumball, Lebrun, 

Di Ciacca, & Orlando, 2005; Thornton et al., 2017). Changing boat classes like going 

from a bigger boat to a smaller boat, changing from sweep to sculling or vice versa are 

factors that are associated with injuries too (Evans & Redgrave, 2016b). The two most 

common sites of injury are the lower back and the knee (Evans & Redgrave, 2016b). 
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2.5.1 Lower Back 

The lower back is the most reported injury site in rowers (Rumball et al., 2005; Wilson, 

Gissane, & McGregor, 2014). The incidence of lower back injury is between 1.5 and 

3.7/1000 h of rowing and associated training (Thornton et al., 2017). Adolescent rowers 

have reported greater low back pain prevalence compared to the general population (Ng, 

Perich, Burnett, Campbell, & O'Sullivan, 2014). Low back pain can even bother athletes 

during activities of daily living (ADL) as reported by Maselli et al. (2015). They reported 

that 40% of the athletes that filled out a questionnaire about pain reported some 

limitations in their ADLs during their last episode of low back pain. Low back pain is 

most likely to develop in the winter months compared to the other seasons (Wilson et al., 

2014). Factors that are significantly associated with the development of low back pain are 

age at the time of the survey, history of rowing before age 16, use of larger blade surfaces 

like a hatchet blade oar, training with free weights, weight machines and ergometers, and 

ergometer training sessions lasting longer than 30 minutes (Thornton et al., 2017; Wilson 

et al., 2014). The main causes of low back injuries are hyperflexion and twisting 

(Rumball et al., 2005). Also, excessive use of lumbar flexion and extension without 

accompanying pelvic tilting may lead to increased lumbar spine loading (Wilson et al., 

2014), which may cause low back pain. Similarly, adolescent rowers reported that 

ergometer rowing, long rowing sessions and sweep rowing are factors that increase pain 

intensity. Spondylosis, sacroiliac joint dysfunction and disc herniation are examples of 

low back injuries in rowing (Rumball et al., 2005). Treatment for low back pain include 

strengthening exercises, physiotherapy, and rest (Rumball et al., 2005; Thornton et al., 

2017). 

2.5.2 Knee 

Knee injuries are also considered common in rowing. Knee injuries represented 15.91% 

of total injuries (Wilson, Gissane, Gormley, & Simms, 2008). The rowing motion 

requires the knee to move through its full range of motion (Thornton et al., 2017). Some 

knee injuries might be due to the repetition of the flexion and extension motion under 

load (Hosea & Hannafin, 2012). In addition, Rachnavy (2012) found a significant 

difference in the kinematic of the knee angle between injured and healthy athletes in 
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rowing, a difference that appears to be related to rowing injury. Patellofemoral pain 

syndrome, tendinopathy, and iliotibial band friction syndrome are some examples of knee 

injuries in rowing (Rumball et al., 2005; Thornton et al., 2017). Treatment for knee 

injuries includes nonsteroidal anti-inflammatory medication, stretching programs, 

physiotherapy, ice and rest but can also contain local corticosteroid injection (Hosea & 

Hannafin, 2012; Thornton et al., 2017). 

2.5.3 Upper Limb 

Upper limbs are the third most frequently injured site in rowing (Hosea & Hannafin, 

2012). Upper limb injuries represent approximately 14% of the total number of injuries 

for the rowing programs at Harvard and Rutgers universities. Examples of upper limb 

injuries include shoulder pain, lateral epicondylitis, deQuervain’s tenosynovitis, 

exertional compartment syndrome, and intersection syndrome (Hosea & Hannafin, 2012; 

Rumball et al., 2005). Shoulder pain can be due to overuse, poor technique or tension in 

the upper body (Rumball et al., 2005) while poor technique or fatigue can cause forearm 

and wrist injuries (Thornton et al., 2017). Treatments for upper limb injuries include ice, 

stretching, massage, relative rest, acupuncture as well as nonsteroidal anti-inflammatory 

medication and cortisone injection (Hosea & Hannafin, 2012; Thornton et al., 2017). 

2.5.4 Rib 

Rib cage pain is common in the rowing population (Hosea & Hannafin, 2012), and can be 

attributed to rib stress fractures (RSFs), costochondritis, costovertebral subluxation, or 

intercostal muscle strains (Hosea & Hannafin, 2012; Rumball et al., 2005). RSB has an 

average incidence of 9.1% in rowing (McDonnell, Hume, & Nolte, 2011). Of these, RSFs 

account for the most time lost from on-water training and competition (Rumball et al., 

2005). Hooper, Blanch, and Sternfeldt (2011) reported that an average of two months of 

training is lost due to rib stress fractures. RSFs are one of the least understood of all 

rowing injuries (Vinther & Thornton, 2016). Even though the mechanism of injury is 

unclear (Evans & Redgrave, 2016b), some researchers have suggested that the co-

contraction of some thoracic muscles, such as serratus anterior and the external oblique 

muscles, might be one of the causes (Evans & Redgrave, 2016b; Hosea & Hannafin, 
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2012; Karlson, 1998). Multiple risk factors of RSFs have been identified by Evans and 

Redgrave (2016a). Intrinsic factors include previous rib injury, relative energy deficiency 

in sport, poor trunk strength/ endurance/ mobility/ flexibility, as well as other types of 

injuries. Examples of extrinsic factors associated with RSFs are changes in training 

environment such as big boat to small boat, sweep rowing to scull or vice versa, as well 

as increased training load, volume and intensity. The Great Britain Rowing Team 

guidelines suggest managing rib injuries by decreasing the load on the rib by stopping 

rowing activities. Three to six weeks of recovery is the recommended healing period. A 

progressive return to rowing is also suggested (Evans & Redgrave, 2016a, 2016b). 

2.5.5 Other Injuries 

Other injuries and health problems have been reported in the rowing literature, such as 

female triad, dehydration, and dermatological issues including blisters and abrasions 

(Rumball et al., 2005; Thornton et al., 2017). Also, some health issues can be associated 

with a specific rowing population. Eating disorders as well as energy availability can be 

an issue especially for lightweight rowers (Beggs, Nolte, & Dickey, 2016; Thornton et 

al., 2017) while pressure sores can be a problem for para-rowers (Thornton et al., 2017).  

In summary, most rowing injuries can be associated to overuse (Hosea & Hannafin, 

2012; Rachnavy, 2012; Smoljanovic et al., 2015) and can occur in various parts of the 

rower’s body. An appropriate loading in the boat (choosing the right oar)  or on the 

ergometer (choosing the right resistance) can reduce risk of overuse injuries (Thornton et 

al., 2017). Well-designed prospective studies are still needed in order to identify risk 

factors for injuries (Thornton et al., 2017; Vinther & Thornton, 2016) and low back pain 

(Maselli et al., 2015), which will help coaches, athletes and therapists to prevent pain and 

injuries that might affect ADLs (Maselli et al., 2015) or even informing premature ends 

to athletic careers (Vinther & Thornton, 2016). 

2.6 Comparisons of on-Water Rowing and Ergometer 
Rowing 

Rowing is a sport that is greatly impacted by environmental factors, such as wind, rain, 

waves and temperature (de Campos Mello, de Moraes Bertuzzi, Grangeiro, & Franchini, 
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2009; Elliott, Lyttle, & Birkett, 2002; Mikulić, Smoljanović, Bojanić, Hannafin, & 

Matković, 2009). In order to avoid these environmental factors, rowers sometimes train 

on ergometers, which are also often used in order to assist crew selections as well as to 

conduct physiological testing in a more controlled environment (Bazzucchi et al., 2013; 

de Campos Mello et al., 2009; Elliott et al., 2002; Fleming, Donne, & Mahony, 2014; 

Lamb, 1989; Mäestu, Jürimäe, & Jürimäe, 2005; Martindale & Robertson, 1984). Of the 

different types of rowing ergometers, the most popular is the air-braked stationary 

ergometer of Concept2
® 

(Fleming et al., 2014; Kleshnev, 2008). Also, dynamic 

ergometers, such as the Rowperfect
®

 ergometer, have been studied and are supposedly 

designed to simulate the force transfer of on-water rowing more accurately (Fleming et 

al., 2014; Mäestu et al., 2005). While comparing dynamic versus stationary ergometers, 

Benson, Abendroth, King, and Swensen (2011) concluded that the force profile as well as 

the high stroke rates on dynamic ergometers are more similar to on-water rowing 

compared to static ergometers. 
 

2.6.1 Kinematic and Kinetic 

Concerning the kinematics of a rowing stroke, Lamb (1989) found that the movements of 

the upper arm as well as the forearm segments have significantly different patterns during 

on water compared to ergometer rowing. These changes specifically affect the “hand-

curve” which is the movement of the hand in the sagittal plane of motion. For the 

movement of the trunk and legs, there were no significant differences between the two 

types of rowing. Also, Fleming et al. (2014) did observe a greater time for the drive phase 

for on-water rowing compared to dynamic and stationary ergometer rowing. The average 

body angles measured at the catch and finish positions of the stroke were statistically 

similar for both on-water and ergometer rowing (Elliott et al., 2002). The same study 

found a decreased stroke length during ergometer compared to on-water rowing and cited 

for this decrease the shorter arm drive in ergometer rowing. 

Time to complete the same distance on-water rowing is greater than the time on 

ergometers with and without a slide (Bazzucchi et al., 2013; de Campos Mello et al., 

2009). Yet, some researchers have suggested that a 2,500 m ergometer distance appears 
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to more closely reflect the effort of on-water rowing (de Campos Mello et al., 2009; 

Mäestu et al., 2005). 

For the kinetic variables, Elliott et al. (2002) concluded that the force curves are similar 

for on-water rowing and the Rowperfect
®
 ergometer. Kleshnev (2008) observed that 

rowers applied a greater force on the handle while rowing on ergometers compared to 

rowing on a single scull boat. Researchers observed a faster increase in handle force and 

leg speed in the boat and on dynamic ergometers compared to stationary ergometers, and 

attributed these increases to the different magnitude of inertial force needed at the 

beginning of the drive (Kleshnev, 2008). Overall, on-water rowing technique is 

considered more multidimensional than ergometer rowing technique because it involves 

balance, movement dynamics, efficiency and maintenance of the boat speed during the 

recovery phase (de Campos Mello et al., 2009; Mäestu et al., 2005). Ergometers may be 

detrimental to on-water rowing technique since the motion of the stroke is not exactly the 

same for both conditions (Lamb, 1989; Mäestu et al., 2005). 

2.6.2 Muscle Activation 

Several differences in muscle activity patterns have been observed between on-water 

rowing and stationary ergometer (Bazzucchi et al., 2013) as well as between stationary 

ergometer, dynamic ergometer, and on-water rowing (Fleming et al., 2014). Bazzucchi et 

al. (2013) observed a greater muscle activation on a Concept2
®
 ergometer than during on-

water rowing, especially for knee extensors. In the other hand, Fleming et al. (2014) 

found significant differences using iEMG to quantify muscle activation between on-water 

rowing, stationary ergometer as well as dynamic ergometer. Bazzucchi et al. (2013) 

observed a difference in terms of timing of maximal activation between stationary 

ergometer rowing and on-water rowing. The timing difference might be explained by the 

complexity of the on-water rowing technique (Bazzucchi et al., 2013). 

2.6.3 Physiology 

On the physiological side, mean and peak oxygen consumption, lactate, mean ventilation 

as well as peak ventilation were similar for ergometer rowing with and without a slide, as 

well as on-water rowing. de Campos Mello et al. (2009) observed no statistically 
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significant difference in heart rate, while Bazzucchi et al. (2013) observed significantly 

higher heart rate during stationary ergometer rowing. They concluded that ergometer 

rowing tends to elicit a greater metabolic demand which might be explained by the 

greater involvement of the arm muscles compared to on-water rowing. Time to complete 

the test was longer on water than on the ergometer. In the same vein, de Campos Mello et 

al. (2009) found that there is a similar contribution of the aerobic systems on water 

compared to rowing on an ergometer when values are normalized to time. Also, 

Urhausen, Weiler, and Kindermann (1993) observed that blood levels of noradrenaline 

was significantly higher and adrenaline had a tendency to have higher values while 

rowing on an ergometer compared to on water rowing at similar heart rates. 

2.6.4 Performance 

Mikulić et al. (2009) observed a positive correlation between rowers’ ergometer 

performance and World Rowing Championship rankings in 17 of 23 World 

Championships rowing events. The observed correlations were higher for smaller boats 

than larger boats. In larger boats, other factors can affect the overall performance such as 

the synchronization between the individuals when rowing. 

Even though there are some biomechanical, physiological and performance differences 

between ergometer rowing and on-water rowing, ergometers should still be considered 

valuable tools in testing, cross training and monitoring training (de Campos Mello et al., 

2009; Kleshnev, 2008; Mäestu et al., 2005; Mikulić et al., 2009). Nevertheless, data 

collected on the ergometer still need to be interpreted with judiciousness when used for 

testing and selection purposes (Kleshnev, 2008). 

2.7 Motor Variability in Different Sports 

Motor variability has been studied in different sports including cyclic ones. While the 

emphasis on motor variability in different sport research usually evaluates performance, 

injuries are also one of the main concerns in these research studies. According to Bartlett 

et al. (2007), movement variability can be functional and might allow athletes to adapt to 

their environments, to reduce injury risk, and to facilitate changes in coordination 

patterns. 
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Studies have looked at motor variability during a running task in connection with injury. 

James, Dufek, and Bates (2000) found joint moment variability differed between a 

healthy and an injury prone group. The injury prone group was determined using a 

questionnaire and participants had self-reported predisposition for incurring overuse 

lower extremity injuries. At the maximal vertical jump height, variability of peak ankle 

joint moment was greater for the injury-prone group. Time to peak variability was greater 

for the healthy group at 50% of the maximal vertical jump. Also, Hamill et al. (1999) 

found less variability in lower extremity joint coordination in a symptomatic 

patellofemoral group compared to healthy individuals. On the other hand, there was no 

statistical difference between asymptomatic individuals with high Q-angle and low  

Q-angle. Atanda, Reddy, Rice, and Terry (2009) defined the Q-angle “as the angle 

between a line drawn from the anterior superior iliac spine to the centre of the patella and 

a line from the centre of the patella to the tibial tubercle” (p.427). Individuals with a 

greater Q-angle have a higher risk of lower extremities pain than individuals with a lower 

Q-angle (de Oliveira Silva et al., 2015). 

In running, Wheat, Baltzopoulos, Milner, Bartlett, and Tsaopoulos (2005) studied 

coordination variability (hip flexion/ knee flexion, hip flexion/ ankle dorsiflexion, knee 

flexion/ rearfoot inversion) for three conditions including: over ground, treadmill and 

treadmill-on-demand. While there was no statistically significant difference between the 

two treadmill conditions, the coordination variability during overground running was 

greater than on the treadmills. 

Hellard et al. (2008) studied stroke rate variability in different swimming styles, different 

skill levels as well as distances (first 100 m compared to the second 100 m during a  

200 m race). Researchers found that the Olympic group had less stroke rate variability 

than the national group. The variability was greater in the first 100 m compared to the 

second 100 m for the butterfly, backstroke and freestyle swimming strokes. 

Cignetti et al. (2009) observed a larger standard deviation for the angular displacements 

of the arm and leg at the end of the test compared to the beginning when doing  

cross-country skiing on a treadmill up to exhaustion. Athletes skied on a treadmill up to 
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exhaustion at a constant speed and incline. During exhaustion, the increased variability 

beyond its optimal value might be explained by the neuromuscular system becoming 

noisier and unstable (Cignetti et al., 2009; Stergiou et al., 2006). In this study, power for 

both arms and legs decreased throughout the exercise and were negatively correlated with 

the standard deviation of the normalized time series of the leg and the arm angle. 

In wheelchair racing, Wang, Vrongistinos, and Xu (2008) found that consistency in 

forearm and arm movement patterns is negatively correlated with wheelchair speed and 

speculated that this variability might be associated with alternately firing different motor 

units. This variability might also lead to less fatigue by distributing the load across 

different muscle units. 

Preatoni, Ferrario, Donà, Hamill, and Rodano (2010) observed an increase of sample 

entropy at the hip and ankle joints for skilled and less skilled athletes in race walking. 

Sample entropy is one of the entropy measures suitable for the analysis of biological 

signals entropy can be defined as “ indices measure the predictability of the signal: the 

higher the entropy, the less regular and predictable the time series” (Preatoni et al., 2010, 

p. 1328). Preatoni et al. (2010) determined that sample entropy can be used to 

characterize more and less skilled individuals. 

In basketball, Kudo, Tsutsui, Ishikura, Ito, and Yamamoto (2000) suggested that variable 

release parameters can result in a consistent throwing performance. This variability is 

important because it offers greater flexibility to adapt to potential perturbations such as 

other players (Bartlett et al., 2007). 

Variability has been studied in different sports and can have a functional role (Bartlett et 

al., 2007; Srinivasan & Mathiassen, 2012). It can be associated with performance, 

injuries, athletic ability and fatigue. 

2.8 Motor Variability in Rowing 

There are a few studies that mention variability and rowing. While some authors argue 

that variability is detrimental to rowing performance (Doyle, Lyttle, & Elliott, 2010), 
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others found that the variability can also have a functional role such as controlling the 

direction of the boat. 

Kleshnev (2012) stated that international crews have a stroke rate variability of 1%, as 

beginner crews have a stroke rate variability closer to 4-5 %. The stroke rower is the 

athlete closest to the bow and is the only one who can be seen by all the crew members. 

This rower sets the pace of the boat and all crew rowers follow their lead. While 

comparing the crew rowers with the stroke rower, the stroke rower had less variability in 

the force pattern than the crew rowers. It could be explained because the crew rowers 

have to coordinate themselves with the stroke rower (Kleshnev, 2012).  

Ng, Campbell, Burnett, Smith, and O’Sullivan (2015) found an increased within-subject 

variability for the lower lumbar angle (angle between the spinous processes of L3, S2, 

and a vertical line) and upper lumbar angle (angle between the spinous processes of T12, 

L3, and a vertical line) for participants with low back pain provoked by rowing compared 

to the participants without pain. The authors suggested that the variability might be the 

cause or a consequence of the injury. These results are similar to other studies with 

participants with acute pain such as the ones from Madeleine et al. (2008). 

Draper and Smith (2006) found a high consistency of different kinetic rowing variables 

such as boat velocity, boat acceleration, and pin force. The participants of the study were 

experienced and rowed 250 m rowing pieces at race stroke rates (Draper & Smith, 2006). 

Stroke to stroke consistency and propulsive work consistency have been found to be 

discriminant factors to identify ability levels (Smith & Spinks, 1995). Athletes with more 

consistency in the previous variables were considered performing better than athletes 

with less consistency. Doyle et al. (2010) observed a negative correlation between the 

coefficient of variation of the arm, trunk, handle and seat velocities and average boat 

velocity. They also suggested that the crews that repeated the same movement pattern 

consistently tend to row at a higher average boat velocity (Doyle et al., 2010). 

Movement variability in rowing has been studied from a kinetic point of view, while only 

a few studies have looked at kinematic variability, it is possible that kinematic variability 

has a functional role and allows rowers to adapt to external perturbations.  
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2.9 Conclusion 

This literature review outlined the impact of different factors on motor variability as well 

as in the sport of rowing. This review also shows the impact of motor variability in other 

sports, in rowing as well as the impact of the variability in different systems of the human 

body. Motor variability might prevent overuse injury, while the number of these injuries 

is significant in rowing. Also, fatigue can affect the rower in different points of view as 

well as motor variability. 
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Chapter 3 

3 Methods 

3.1 Participants 

Eleven athletes from the University of Western Ontario Varsity Rowing Team 

participated in this study. Some background information about the participants was 

collected (Table 1). All participants signed informed consent forms approved by the 

institutional Ethics Committee. 

Table 1: Background information of the participants 

Gender Age 

(years) 

Rowing category Performance level 

M F Light open University National 

team weight 

4 7 22±2 4 7 7 4 

 

3.2 Testing Procedures 

Test pieces 

Participants were tested on water at high intensity, and on an ergometer both at high 

intensity and low intensity. High intensity is the rowing speed used during a long-

distance race (4 to 10 km) while low intensity is the speed used for a 60 to 120 minutes of 

training. Each participant in the study performed all tests. Participants started with the  

on-water test due to the limited time available. Filming was not possible in the darkness, 

during rain, or windy conditions. For the on-water part of the study, participants were 

asked to perform in a single scull boat a 1,750 m or 2,000 m piece at a constant pace and 

a predetermined high intensity of the rower’s long-distance race pace. For the tests on the 

stationary Concept2
®
 ergometer, participants had to perform two 2,000 m pieces at 
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“high” and “low” intensities. Athletes were given the choice to start their first session 

with their preferred intensity. Before each test, the rowers went through their individual 

warm-up routine. The three test sessions were performed on three different days with at 

least one rest day between the two high intensity pieces.  

3.3  Data Collection 

Prior to the beginning of each session, customized markers were placed on the 

participants at different anatomical points on one side of the body. The number of 

markers and their location depended on the environment (on-water rowing or ergometer 

rowing). For each participant, markers were placed on the same side of the body 

throughout all three tests. According to Bartlett, Bussey, and Flyger (2006), movement 

variability cannot be assessed objectively without markers. The errors stemming from 

digitizing with the use of surface markers to represent underlying joints are considered 

small (Bartlett et al., 2006). 

3.3.1 On-Water Rowing 

One marker was placed on the coronoid process of the ulna (wrist) before the beginning 

of the test (see Figure 1). Videos were collected at a rate of 30 frames/second with a 

camera (Sony, Cybershot DSC-RX10M3) perpendicular to the plane of motion that was 

located at approximately 20 m distance from the rower in a motor boat that travelled 

parallel to the rowing boat with the speed of the boat. This method was also used in 

Bechard, Nolte, Kedgley, and Jenkyn (2009).The first set of data was recorded after  

200 m into the piece. The second set of data was recorded between 500 m and 200 m 

before the end of the piece.  
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3.3.2 Ergometer Rowing 

Markers were placed on the coronoid process of the ulna (wrist), trochanter major (hip), 

lateral condyle of the tibia (knee) and lateral malleolus (ankle) before the beginning of 

each test (see Figure 2). A camera (Sony, Cybershot DSC-RX10M3) was placed 

perpendicular to the plane of motion on a tripod that was located approximately 5 m 

away and perpendicular to the plane of motion and recorded at 30 frames/second. The 

whole 2,000 m piece was recorded.   

z

 
 x

  x 

x

 
 x

  x 

Figure 1: Sketch of a rower in the finish position during a test on the 

water with the marker (  ) used for this trial. 
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3.4 Data Processing 

The videos of the ergometer rowing and on-water rowing were trimmed in order to keep 

only two videos of 11 consecutive strokes after 200 m and between 500 m and 200 m 

before the finish for each session.  

The number of strokes that is needed to be analyzed for the study was determined using a 

modified version of the sequential estimation technique (Clarkson, Katch, Kroll, Lane, & 

Kamen, 1980). In order to calculate a stable variability for each measure, the criterion 

was met when the cumulative variability fell within the 20-trial standard deviation ±0.25 

of the 20-trial standard deviation. This criterion represented a conservative cut-off and 

was chosen according to Hamill and McNiven (1990). To find this criterion, this 

technique was performed for the knee angle and the stroke duration variability on one 

video per test (high intensity on ergometer, low intensity on ergometer, and high intensity 

on water). Eleven cycles marked the first time that all the variables fell within the 

criterion for all conditions. 

Digitizing was done using the software Tracker (Douglas Brown, 2018; Version 4.95). 

Depending on the environment, points digitized included the coronoid process of the 

z

 
 x

  x 

x

 
 x

  x 

Figure 2: Sketch of a rower in the catch position during a test on the ergometer 

with the markers (  ) used for this trial 
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ulna, the trochanter major, lateral condyle of the tibia, the lateral malleolus, a point on the 

boat as well as the 2 points on the shore. Data were exported into an Excel sheets 

(Microsoft Excel, 2007) and processed using the software MATLAB (Version 2017a). 

The raw data associated with the position of the wrist in x-direction relative to the boat 

was used to determine the catches as presented by Pollock et al. (2012). The frame 

associated with the catch position was determined by the smallest x-value of the wrist. 

3.4.1 On-Water Data 

For the on-water analysis, a custom MATLAB program was used to calculate the 

variability of duration of strokes. Two points on the shoreline which is horizontal in the 

background of the video were digitized in order to define the x and z-axis of the frame to 

the movement of the rower. This procedure was done to set a proper coordinate system 

for every video frame in order to limit possible error coming from the potential turning 

movements of the camera. The wrist marker as well as a point on the boat were then 

digitized in order to calculate the coordinates of the wrist marker relative to the boat. This 

process was needed to be able to compare the data to the ergometer trials and to 

determine the frame at which the catch occurred. Standard deviation of duration of 

strokes was used to calculate the temporal variability.  

3.4.2 Ergometer Data 

A custom MATLAB program was used to calculate variability of knee joint angle in the 

sagittal plane, as well as the temporal variability of the duration of strokes. Raw data of 

the markers placed on the greater trochanter, lateral condyle of the tibia and lateral 

malleolus were filtered using a zero-phase Butterworth filter (order 4). The cut-off 

frequency of the filter was optimized using the residual analysis technique described in 

Winter (2009).The angle at the knee joint angle (see Figure 3) was calculated using the 

law of cosines (Equation 1). The knee joint angle was studied since the majority of the 

power while rowing is coming from the legs (Kleshnev, 2014).   
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Equation used to calculate the knee angle (1): 

        
                                                           

                                            
           (1) 

a=ankle, h=hip, k=knee 

 

Figure 3: Example of knee angle for 11 strokes 

Afterward, time was normalized for each stroke from zero to one hundred percent  

(Figure 4). Time normalization is used in rowing to allow comparison between strokes 

and subjects (Pollock et al., 2012).  
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Figure 4: Example of knee angle for 11 strokes normalized with time 

For each percent of stroke, standard deviation was calculated for the knee angle ( ° ). The 

average standard deviation was used to quantify motor variability at each joint. The 

standard deviation is one of the most used measure of variability (James, 2004).  

Average standard deviation was calculated using formula (2) presented by James (2004):  

       
    

  
   

 
 

 
  

            ) 

The smallest value in x-direction for the wrist was used to determine the catch position 

for every stroke. The respective time of this position was then used to calculate, the 

duration of each stroke. Temporal variability of strokes was then calculated using the 

standard deviation of the duration of all the strokes.  
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To gather more information about the temporal variability associated with time and 

intensity, the duration of every stroke during the whole exercise was calculated for both 

ergometer conditions. It was not possible to include data coming from the on-water 

analysis since only part of the exercise could be recorded. A rolling window analysis was 

performed for all stroke duration for both low and high intensity rowing exercises on the 

ergometer. Each window had 11 strokes. The standard deviation for each window was 

calculated. The number of strokes was reported as a percentage of the total number of 

strokes of the whole exercise. This procedure allows the comparison between the 

different intensities and participants. For each intensity, the median variability of each 

percent was then calculated.  

3.5 Statistical Analysis 

Temporal variability and knee joint angle variability have been analyzed separately. The 

different statistical tests were performed using IBM SPSS Statistic (Version 25).  

3.5.1 Temporal Variability 

Statistical analysis for the temporal variability was performed using the Generalized 

estimating equations (GEE) technique. GEE procedure extends the generalized linear 

model that facilitates the analysis of repeated measurements (Ballinger, 2004). GEE 

analysis was performed due to the study design not being fully factorial. The working 

correlation matrix used is independent since the Quasi-likelihood under independence 

model criterion (QIC) was the smallest (Norusis, 2007). The best model was determined 

using the lowest Corrected Quasi-likelihood under independence model criterion (QICC) 

(Norusis, 2007). The predictors used in the model are environment (on water; ergometer), 

intensity (low and high), and distance (beginning and end). Response variable was the 

temporal variability (s) and was considered continuous. Due to the number of clusters, 

the model-based method correlation matrix was used (Horton & Lipsitz, 1999). The 

Generalized Score Chi-square statistic test was performed (Molenberghs & Verbeke, 

2007). The beta coefficient, the p-value and the standard error associated with the 

different predictors in the model will be reported.  
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3.5.2  Knee Joint Angle Variability 

A 2-way ANOVA within subject was performed in order to assess if intensity and 

distance rowed affect the variability of the knee joint angle. In order to respect the 

assumptions of normality of the residuals, data were transformed using the reciprocal 

square root. After the transformation of the data, the normality of residuals was assessed 

using Kolmogorov Smirnov test and was met for p ˃ .05. The assumption regarding the 

sphericity was tested using Mauchly’s test of sphericity and was met for p ˃ .05. The  

p-value as well as the observed power of the distance rowed, the intensity and the 

interaction between the two factors will be reported. 
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Chapter 4 

Chapter  

4 Results 

4.1 Temporal Variability 

Due to the low number of clusters and groups, results from this section should be 

interpreted with caution. Following the statistical analysis, the beta coefficient, the 

standard error, and the p-value were calculated for each variable included in the model. 

The environment (on water or ergometer), intensity (low or high) and distance (beginning 

and end) are factors that are statistically significant in the model. Beta coefficients were 

calculated for all variables and for the intercept (constant). 

Table 2: Beta coefficient, p-value and standard error of the different variables used 

in the model 

Variables Beta Coefficient p-value Standard error 

Environment -0.013 .007 (**) 0.003 

Intensity 0.007 .021 (*) 0.003 

Distance 0.006 .028(*) 0.0025 

Intercept 0.039 .001(**) 0.0025 
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Using the different factors in the analysis, an equation was associated with the model 

(Equation 3) to predict the temporal variability of the movement. 

                                                                       

Where “Y” equals the predicted variability (s), “Xenvironment” (on water =0, ergometer 

=1), “Xintensity” (high intensity =0, low intensity =1), and “Xdistance” (beginning=1, 

end=0). 
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4.2 Effect of Environment on Temporal Variability 

Variability of the duration of strokes is affected by the environment (p=.007). Variability 

while rowing on water is greater than the variability while rowing on the ergometer if the 

other predictors are kept constant (Figure 5). For on-water rowing (high intensity, at the 

end of the exercise), the predicted variability is 0.039 s while for the ergometer rowing 

(high intensity, at the end of the exercise) the predicted variability is 0.026 s. On-water 

rowing increased the variability by 0.013 compared to ergometer rowing. 

 

Figure 5: Predicted variability (s) associated with environment at high intensity at 

the end of the rowing exercise 

 (** p≤.01) 
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4.3 Effect of Distance travelled on Temporal Variability 

Variability associated with distance is statistically significant in the model (p=.021). 

Predicted variability at the beginning of the rowing exercise (0.033 s) is significantly 

greater than the variability at the end of the rowing exercise (0.026 s) if rowing on an 

ergometer at high intensity (see Figure 6). 

 

Figure 6: Predicted variability (s) associated with distance at the beginning and end 

of the rowing exercise at high intensity on the ergometer  

(* p≤.05) 
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4.4 Effect of Intensity on Temporal Variability 

There is a statistically significant difference between rowing at low intensity compared to 

rowing at high intensity (Figure 7). The variability is greater when rowing at low 

intensity compared to rowing at high intensity if the other predictors are kept constant. 

  

Figure 7: Predicted variability (s) associated with high and low intensity on the 

ergometer at the end of the rowing exercise 

 (* p≤.05) 

The predicted variability associated with rowing at high intensity on ergometer at the end 

of the exercise is 0.026 s or 0.032 s if rowing at low intensity.  
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Temporal variability seems to be greater during most of the rowing exercise (Figure 8).  

 

 

Figure 8: Median of all participants for the duration of stroke variability (s) 

throughout the whole rowing exercise (Number of strokes during the exercise (%) 

for ergometer rowing at high and low intensity 

Visual analysis of Figure 8 reveals that the temporal variability associated with the 

number of strokes during the whole exercise on the ergometer tends to be greater at low 

intensity compared to rowing at high intensity. The greater variability associated to 

rowing at a lower intensity is visible for most of the rowing exercise. Also, it seems that 

there is a greater variability at the beginning of the exercise (0-5%) compared to the rest 

of the rowing exercise for both intensities. The median variability for each percent of 

strokes was reported to avoid possible outliers that would greatly affect the central 

tendency measurement. 
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4.5 Knee Joint Angle Variability 

For the knee joint angle variability, distance, intensity and the interaction between the 

intensity and the distance were not significantly different (Table 3). The observed power 

for the different factors and the interaction was considered low (Table 3).  

Table 3: Factors and p-Value Associated with the Analysis of Knee Joint Angle 

Variability 

Factors p-value Observed power 

Intensity .315 0.16 

Distance .302 0.17 

Intensity x Distance .094 0.38 

Following the statistical analysis, results from this section need to be interpreted with 

caution due to low power. 
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Chapter 5 

5 Discussion 

5.1 Stroke Duration Variability Due to the Distance travelled 

Temporal variability is greater at the beginning compared to the end of the rowing 

exercise. In addition, the decrease variability between the beginning and the end of the 

exercise is not constant.  

It is possible that the difference between the variability at the beginning and the end of 

the exercise is due to the rowers trying to overcome the inertia of the flywheel on the 

ergometer or the boat to get up to speed and to find the appropriate exercise intensity at 

the beginning of the exercise, which would increase the variability.  

Hellard et al. (2008) observed similar findings as this study. These researchers associated 

the decrease of temporal variability in swimming to a decrease in speed of the athletes. 

Although speed was not recorded in this study, participants were asked to row at the same 

intensity and to be consistent throughout the whole exercise. The participants controlled 

their intensity with either a monitor in the boat that would provide them with stroke rate 

and velocity, or with the monitor on the ergometer. Also, even though the task for the 

athletes was to row with a high intensity, it was not an exhausting intensity since the 

speed could be sustained for longer than 2,000 m. Therefore, it is unlikely that speed 

could explain the results of this study. 

On the other hand, Cignetti et al. (2009) found that increase in variability was associated 

with fatigue, and so the decreased variability in this study could be explained by the 

rowers not rowing to exhaustion, while the participants in Cignetti et al. (2009) skied to 

exhaustion. In this study, the fatigue might have been substantial enough to have 

significantly impacted the temporal variability of the rowers. It is also possible that the 

results may have been different if the first recording of the rowing exercise was taken 

later in the exercise, as for example at the 300 m mark as opposed to 200 m. The smaller 
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variability seen at the end of the exercise could possibly point to the relationship between 

fatigue and injury in rowing. 

5.2 Stroke Duration Variability Due to the Environment 

There is a greater variability associated with rowing on water compared to rowing on the 

ergometer. Wheat et al. (2005) found comparable results with a smaller coordination 

variability when comparing running on the ground and on a treadmill. These researchers 

suggested that the difference was potentially explained by the surrounding environment 

being more static while running on a treadmill compared to overground running. Since 

visual information is important for stability (van Ingen Schenau, 1980), it is possible that 

the difference of visual information could explain the greater variability associated with 

running over ground compared to running on a treadmill (Wheat et al., 2005). This theory 

could also apply to the difference in variability of the duration of strokes between 

ergometer rowing and on-water rowing. The reference system when rowing on an 

ergometer is, of course, stable compared to a reference system that moves with the 

athletes while rowing on water.  

Adaptation, one of the functional roles of variability (Bartlett et al., 2007), could also 

explain the difference of temporal variability between on-water rowing and ergometer 

rowing. While rowing on water, athletes need to adapt to different factors such as wind 

and waves, as well as the balance of the boat. It might be possible that the greater 

variability of the duration of strokes observed on water is due to rowers adapting to these 

external environmental factors. 

Also, since the method of collecting data was not exactly the same between on-water 

rowing and ergometer rowing, it is possible that the increase in variability due to the 

environment is in fact due to the data collection. While measurement error contributes to 

the movement variability, measurement errors from on-water rowing were reduced by 

adjusting the coordinate system of the camera to the direction of motion. 
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5.3 Stroke Duration Variability Due to Intensity 

There is a greater stroke duration variability at lower intensity compared to higher 

intensity. These results are in accordance with a study by Jordan, Challis, and Newell 

(2006). They studied the variability of stride intervals and found that the standard 

deviation decreased with increased speed while running. Other studies from the same 

research team have shown a “U-shaped” relationship between stride interval consistency, 

and walking or running speed (Jordan, Challis, & Newell, 2007; Jordan & Newell, 2008). 

Robins, Wheat, Irwin, and Bartlett (2006) have studied the effect of shooting distance on 

movement variability in basketball. They have found that the greater the distance, the 

smaller the variability. While a greater distance of shooting is associated with a more 

difficult task (larger force on the ball, higher velocity of the ball, etc.), it might be 

possible to think that the decrease in motor variability associated with intensity in rowing 

can also be explained by the increased difficulty of the task. Robins et al. (2006) 

attributed the greater variability at closer distances to the larger margin for error and less 

constrained movement pattern. 

5.4 Knee Joint Angle Variability  

While intensity and time did not significantly influence knee joint angle variability, there 

are several possible explanations for it. While rowing on the ergometer, the hip joint and 

ankle joint are fixed. The ankle is fixed to the foot stretchers while the participants are 

sitting on a seat that moves on a horizontal beam that is a rail-like guide for the seat 

wheels. Thus, the movement of the participant’s lower extremities is largely constrained, 

so it is possible that the motor variability is less affected by factors such as intensity and 

fatigue. Other studies have seen a change in joint angle variability due to fatigue (Cignetti 

et al., 2009; Selen et al., 2007). The tasks used in these studies have open kinetic chains. 

Movements with open kinetic chains have more freedom compared to the knee angle 

joint in rowing, which is considered a closed kinetic chain. This could explain the 

difference between the results of this study and the other studies mentioned above. In this 

experiment, low statistical power could also explain the lack of statistical significance for 

the intensity and distance. 
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5.5 Limitations 

A few potential sources of error could influence the results of this study. Since the 

method of data collection was not exactly the same for on-water rowing and ergometer 

rowing, it is difficult to distinguish variability associated with the environment and the 

variability that is due to the difference in the data acquisition method. The camera was on 

a static tripod during the ergometer condition while being held by the technician in a 

moving boat during the on-water condition. 

Another possible limitation from this study can arise during the data processing phase. 

Even with filtering the data and taking great care while digitizing the data to be as 

accurate as possible, it is possible that experimental error could increase or decrease the 

variability measured and affect the results of the study.  

Due to the difficulty of recruiting highly qualified university and national team rowers to 

participate in the study, small sample size, power and number of clusters could also 

influence the results, and the conclusions of the study.  

5.6 Conclusion 

The results of this study suggested that temporal variability in rowing is influenced by the 

environment, distance rowed as well as the intensity of the exercise. For the same 

intensity and distance travelled, a greater variability is demonstrated while rowing on 

water compared to rowing on the ergometer. These changes could be due to 

environmental factors such as wind and waves as well as the different information 

provided by the sight that affects stability. Also, the decreased variability associated with 

increased intensity might be due to the difficulty of the task or is related to the speed like 

in running. The change of variability associated with the distance rowed might be 

explained by fatigue or by the greater variability at the beginning of the exercise to 

overcome inertia. Variability of the knee joint angle was not affected by the distance and 

by the intensity. These results could be explained by the closed kinetic chain associated 

with the knee joint while rowing and by the low statistical power of the study. Rowing 

coaches should be aware of the different factors influencing variability of the movement 
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and take them into account when giving feedback to athletes. Also, coaches and athletes 

should be aware of some functional roles of variability such as adaptation and injury 

prevention. 

5.7 Future Research 

This study was interested in factors influencing variability such as environment, distance 

and intensity. It would be interesting to compare the variability of kinetic variables, such 

as force, to variability of kinematical variables, such as stroke duration variability or joint 

angle variability. This would allow a better understanding of the relationship between 

these two types of measurements. Also, it would be interesting to see how crew rowing 

would impact the variability of individual rowers. 

Another subject of interested would be to study variability associated with potential 

injuries in rowing. Larger variability of the movement could possibly reduce the stress on 

tissues, which may decrease the number of injuries. It would be interesting to better 

understand if this theory could apply to rowing since most injuries in rowing are often 

due to the repetitive nature of the sport (Hosea & Hannafin, 2012). 
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